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Direct Transformation of Variational Problems
Into Cauchy Systems. II. Scalar-Semi-Quadratic Case

2

James Hess, Harriet Kagiwada and Robert Kalaba
October 1977

Abstract. This series of papers addresses three interrelated problems:

The solution of a variational problem, the solution of integral equations,
and the solution of an initial valued system of integrodifferential equa-
tions. It will be shown that a large class of variational problems requires
the solution of a non-linear integral equations. It has also been shown
that the solution of a non-1inear integral equation is identical to the

solution of a Cauchy system. In this paper, we by-pass the non-linear in-

tegral equations and show that the minimization problems directly implies a
solution of the Cauchy system. This second paper in the series look at

semi-quadratic functional and scalar functions.

Keywords. Variational problems, integral equations, parametric imbedding.

1. Introduction 1

Many optimization problems result in variational problems of finding

- -

a function z(t), 0 < t< 1, that minimizes the functional
W[z] = & £ 1g 2(s)k(t,s)z(t)dtds + 2 1] F(z(t),t)dt.

By standard variational techniques it can be shown that the optimal function, f(ﬁf}ai?J

u(t), satisfies a non-linear Fredholm integral equation (Ref. 1). Recent 0|

work in the study of integral equations (Ref. 2) has shown that solutions -

of non-linear integral equations are requivalent to solutions of particular gy gy
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initial valued systems of integrodifferential equations (Cauchy Systems).

It appears that the three problems -- variational, integral equations,

and Cauchy Systems -- are equivalent to each other. An important missing
link in the analysis has been the demonstration that the variational problem
leads directly to a Cauchy System without passing through an integral equa-

tion. These papers provide that Tink.

2. Derivation
Suppose we desire to find a scalar function z(t), 0< t < 1, which

minimizes the semi-quadratic functional

W[z,AD = & 7p 13 z(s)k(t,s)z(t)dsdt + 2 s} F(z(t),t)dt, (1)

where k (t,s) is a symmetric, positive definite Kernel, F(Z,t) is a convex,
twice differentiable function in z, and 1 is a sufficiently small scalar

parameter. This class of problems is semi-quadratic because the first term
is a quadratic functional in z. This is more general than it might look at

first glance, for the choice variable may actually be a function (x(t) and

Z(t) might be a composite function.

z(t) = h(x(t)) (2)

where h is a convex, differentiable function. By simple change of varia-
bles this more general problem may be reduced to (1). The standard varia-
tional approach to this problem results in a non-linear integral equation

which the optimal function must satisfy.
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Proposition 2.1. The function u(t) which minimizes W[z;A] must

satisfy the integral equation
Fy(u(t),t) + 2 s k (t,s)u(s)ds =0, 0 ¢ t < 1. (3)

Throughout the paper, the partial derivative of F with respect to its ith
argument is denoted by Fs and the derivative of u(t,r) with respect to A
is denoted by UA(t,x).

The proposition is established as follows. The arbitrary admissible

functions may be written as
z(t) = u(t) + en(t), (4)

where ¢ is an afbitrary scalar, and n(t) is an arbitrary function. Take a
Taylor series expansion of W[Z,A] in ¢, ignoring all terms in e or higher.

This results in
Wlz,A] = Wlu,a] + eClu,n,2] (5)
where
1 1

ClusnaA] = & £ 1) k(tas)u(s)n(t)dsdt + x s rg u(t)k(t,s)n(s)dsdt

+2 f% Fi(u(t),t)n(t)dt. | (6)

Optimality requires
eClusn,sA] > 0 (7)
For all e,n. Since ¢ has arbitrary sign, this implies

Clu,n,2] = 0. (8)
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Using the symmetry of k(t,s), variables of integration may be relabeled so
that Eq. (8) is expressed as

A fz) fz) k(t,s)u(s)n(t)dsdt + f}, F](u(t).t)n(t)dt =0 (9)

for all arbitrary n(t). Applying the fundamental lemma of the calculus of
variations to Eq. (9) results in the desired integral equation. This completes
the proof.

Another approach to the minimization problem is to ask how the optimal

solution changes as A varies. This is referred to as parametric imbedding.

The basic idea of parametric imbedding is to convert the non-linear integral
equation into a system of initial valued integro-differential equations. The

basic result given in Ref. 2 is

Proposition 2.2. The function u(t,A) which satisfies the non-
linear integral Eq. (3) parameterized by A is the solution to
the following initial valued integrodifferential equations,.

augmented by a resolvent kernel K(t,s,A), and conversely:

U, (£,2) + a(tar) + X 75 K(t,S,0)a(S,A)ds = 0 (10)

K, (£:5,3) + 8(t,502) + 7g K(t,s',2)8(s",5,0)ds’ = 0 ()

Fy(u,(£,0),t) = 0 (12)

K(t,s,0) + k(t,s)/F,,(u(t,0),t) =0 (13)
where

a(ts) = 7p k(t,s)u(s,A)ds/Fpq(u(t,a),t) (14)

I e e




5(tss20) = ¥(t,8,0) + ) k(t,sVK(sT,5,00/Fp (u(t,1) ,t)ds!
+ A fg y(t,s1,A)K(s],s,x)ds] (15)
¥(tys,2) = 2 ((t,s)/Fy;(u(t,n),t)) (16)

For 0< t< 1, 0S¢ 1.

The Cauchy System (10)-(16) has been very useful for the computation of
solutions of non-linear integral equations, whether or not they arise from a
variational problem. Well-known techniques, such as the Runge-Kutta or
Adams-Moulton methods, together with the methods of lines, are readily avail-
able. See Ref. 3 for one such example. In addition, there are many cases
where the parameter A has an interesting physical interpretation and thus
the Cauchy System provides all the equations needed to study the sensitivity
of the solution to changes in important parameters

It will now be shown that the Cauchy System (10)-(16) may be derived
directly from the semi-quadratic minimization problem without ever writing
down the non-linear integral Eq. (3). This shows that the solution of the
variational problem could have proceeded even if the integral equation had
never been discovered. The Cauchy System is perfectly adequate for describ-

ing the optimal function u(t,2).

Proposition 2.3. The function u(t,A) which minimizes W[u,A] must
satisfy the Cauchy System (10)-(16).

The proposition is established as follows. Let u(t,A) be the solution

of the minimization problem for parameter value A, and let u(t,Ar+d)) be the




solution for A+dA. Admissible solutions to the variational problem may be

expressed as
Z(t,l) % U(t,k) + en(t), “7)
x(t,a+dr) = u(t,a+dr) + op(t), (18)

{ where ¢ and o are arbitrary scalars and where n and p are arbitrary functions.

Approximate W[z,2] and W[x, A+dA] by a Taylor series in the first argument.

2

When € and o are suitably small the terms in ¢~ and 02 or higher may be

ignored. The resulting approximations are
Wlz,2] = W[u,A] + eC[u,n,A] + higher order terms (19)
Wix,A+dx] = W[u,A+dr] + oC[u,p,r+d)A] + higher order terms (20)
where
Clu,nsAd = 2 & £y g k(t,s)u(s,A)n(t)dsdt
+2 1) Fy(u(t,2),t)n(t)dt (21)
Clu.paa+dr] = 20x4h) 7o 1) k(t,s)u(s,A+dr)o(t)dsdt
+ 2 10 F(u(t,aedn) ,t)o(t)dt (22)

If u(t,r) and u(t,r+dr) are optimal, then it must be true that

e Clu,n,a] > 0 (23)

o Clu,p,a+dr] > 0 (24)




for all e,o0,n,p. Since these are arbitrary, select ¢ = -0 and n = p s0

" that (23) and (24) are

-oClu,ps2] > 0, (25)

oClusp,r+dr] > 0. (26)
Add these two inequalities to get

o(CLu,psa+dr] - Clu,0,2]) > O. (27)
Since o has arbitrary sign, this implies that

Clu,p,2+dr] - C[u,p,A].= 0, (28)

for all arbitrary p. Expand C[u,p,A*+dA] in a Taylor series in A+dx; ignoring

terms with (dA)2 or higher this gives
CLu,p,a+dr] = CLu,p,2] + dX {2 fé fs k(t,s)u(s,r)p(t)dsdt
+ 20 5] g k(tss)u (550 )p(t)dsdt

+ 2 1) Fp(u(tan),thuy (E,0)p(t)dt. ) (29)

Hence for dx sufficiently small, Eqs. (28) and (29) imply that the term in
brackets in Eq. (29) must be zero for all arbitrary p(t). Apply the funda-

mental lemma of the calculus of variations and we have
Fip(u(ta2), 80, (£,2) + 7 K(t,s)u(s,2)ds

+ % sp k(t,s)uy (s,M)ds = 0. (30)
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Divide Eq. (30) by F]](u(t,x),t) and we have the linear Fredholm integral

equation in the unknown function uA(t,A)

uk(t,x) + a(t,A) + 2 fé m(t,s,A) uA(s,A)ds =0, (31)
where a(t,2) is defined in Eq. (14) and m(t,s,)») is defined by

m(t,s,A) = k(t,s)/Fyq(u(t,2),t) (32)

A linear Fredholm integral equation with kernel m(t,s,A) has a solution

that may be expressed using a resolvent kernel K(t,s,A) as follows
Uy (£,2) + alt,2) + & £y K(t,S,0)a(s,A)ds = 0. (33)

This is Eq. (10) of the Cauchy System. The resolvent kernel must satisfy

a related linear Fredholm integral equation (see Ref. 2),
K(t,s,1) + m(t,s,#) +.A IL m(t,s',A)K(s},s,A)ds' = 0. (34)
Differentiate (34) with respect to A to get
KA(t,s,A) + y(t,s,2) + fé m(t,s',A)K(s',s,1)ds’
+ 2 5p Y(t,s*,A)K(S",5,0)ds’
+ 2 s m(t,s', 2K, (s*,5,0)ds" = 0, (35)

where y(t,s,1) is defined in Eq. (16). Since Eq. (35) is also a linear
Fredholm integral equation with a kernel m(t,s',A), its solution may be

expressed using the same resolvent kernel.




Kk(t,s,x) + 6(t,s,1) + 13) K(t,s',r)8(s',s,2)ds' =0 (36)

where §(t,s,\) is defined in Eq. (15). This is Eq. (11) of the Cauchy
system. When A = 0 in the original minimization problem, W[u(t,0),0]
is minimized when F(u(t,0),t) is minimized for each t. This implies
that
Fi(u(t,0),t) = 0 (37)

which is the initial condition (12). The initial condition (13) follows

from Eq. (34) by setting A = 0. This completes the proof.

3. Discussion
The objective of this paper has been to reduce the semi-quadratic
variational problem in Eq. (1) to the Cauchy System in relations (10)-(16).
In particular we have been able to do this without making any use of the
Euler equation, which takes the form of the non-linear integral equation (3).
The earlier paper in this series (Ref. 4) demonstrated that the
reduction could be performed in the quadratic case. In this paper, the
general technique of direct reduction is made more explicit. The objective
functional is approximated first in a Taylor series in the choice function
and then in a Taylor series in the parameter A. It would have been possible
to derive the non-linear integral equation along the way but this was not
done in order to arrive the sensitivity Eqs. (10)-(16). This general tech-
nique may be applied to problems which are not semi-quadratic and which
have a vector of choice functions. This aoproach may be used to develop
new equations for such variational problems as the team decision problem,

Ref. 5, or the simplest problem in the calculus of variations.
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